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a b s t r a c t

In this study, the multiple scattering of thermal waves by dense coated fibers in composites is considered,
and the analytical solution of the non-steady effective thermal conductivity of composites is presented.
The Fourier heat conduction law is applied to analyze the propagation of thermal waves in the fibrous
composite. The scattered and refracted fields in different material zones are expressed by using wave func-
tions expanded method. The addition theorem for Bessel functions is used to accomplish the translation
between different coordinate systems. The theory of quasicrystalline approximation and the conditional
probability density function are employed to treat the multiple scattering of thermal waves from the
dense fibers in matrix. The effective propagating wave number and non-steady effective thermal conduc-
tivity of composites are obtained. As an example, the effects of the material properties of the coating on
ave function expansion method the effective thermal conductivity of composites are graphically illustrated and analyzed. Analysis shows
that the non-steady effective thermal conductivity under higher frequencies is quite different from the
steady thermal conductivity. With the increase of the volume fraction of fibers, the effect of the thickness
of the coating on the non-steady effective thermal conductivity increases greatly. In different region of
wave frequency, the effects of the thickness and properties of the coating and the volume fraction of
fibers on the effective thermal conductivity show great difference. Comparisons with the steady thermal

m oth
conductivity obtained fro

. Introduction

The subject of the effective thermal conductivity of compos-
tes is one of the classical problems in heterogeneous media

hich has recently received renewed interest due to the increasing
mportance of high temperature systems, e.g., car manufacturing,
edicated space structures, etc. These materials usually undergo a
omplex thermal history. Determining the effective thermal prop-
rties of composites is crucial for a successful design and for the
anufacture of materials. The development of micromechanical
odels for accurately predicting the effective thermal conductivity

f multiphase composites has been the specific objective to study.
The methods used to measure the thermal conductivity are

ivided into two groups: the steady state and the non-steady state
ethods. In the first one, the sample is subjected to a constant
eat flow. In the second group, a periodic or transient heat flow
s established in the sample [1]. In the past, much attention has
een focused on the problems of steady state.

∗ Corresponding author. Tel.: +86 311 87939171.
E-mail address: fangxueqian@163.com (X.-Q. Fang).

040-6031/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2008.11.019
er methods are also presented.
© 2008 Elsevier B.V. All rights reserved.

The earliest models for the thermal behavior of composites
assumed that the two components are both homogeneous, and
are perfectly bounded across a sharp and distinct interface. The
Maxwell solution [2] is the starting point to find the effective con-
ductivity of two-phase material systems, but it is valid only for
very low concentration of the dispersed phase. Subsequently, many
structural models, e.g., Parallel, Maxwell-Eucken [3], and Effective
Medium Theory models [4], were proposed. Recently, Samantray
et al. applied the unit-cell approach to study the effective thermal
conductivity of two-phase materials [5]. The idea of the Generalized
Self-Consistent Model was also developed by Hashin [6] to deter-
mine the effective thermal conductivity of the two-phase materials.

Recently, coating inclusions have been introduced in the design
of composite to enhance the thermal properties of composites.
In the modeling, the coating was also introduced for other rea-
sons: first, during the manufacturing process, a chemical reaction
between inclusion and matrix can create a third phase: the coating.
Second, due to a mismatch between the two phases, the perfect

interface assumption is not valid. Thus, the coating contributes to
the character of the non-perfect interface. The dramatic effect of
interfacial characteristics on thermal conductivities and thermal
diffusivities has been experimentally demonstrated by Hasselman
and co-workers in particle [7] and fiber reinforced composites [8].

http://www.sciencedirect.com/science/journal/00406031
http://www.elsevier.com/locate/tca
mailto:fangxueqian@163.com
dx.doi.org/10.1016/j.tca.2008.11.019
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ased on an equivalent inclusion concept, Hasselman and John-
on extended Maxwell’s theory to the systems of spherical and
ylindrical inclusions with contact resistance [9]. Benveniste and
is co-workers have proposed several analytical models to pre-
ict the effective thermal conductivity of composite materials
hich include the important effects of a thermal contact resistance

etween the fillers and matrix [10], and the coated cylindrically
rthotropic fibers with a prescribed orientation distribution [11]. Lu
nd Song [12,13] investigated the coated or debonded inclusion and
eveloped a more general model to predict the effective thermal
onductivity of composites.

Due to the complexity of non-steady loading, there are few cal-
ulations on the effective thermal conductivity in these materials
nder modulated conditions. Recently, Monde and Mitsutake [14]
roposed a method for determining the thermal conductivity of
olids by using an analytical inverse solution for unsteady heat
onduction. By using modulated photothermal techniques, Salazar
t al. [1] studied the effective thermal conductivity of composites
ade of a matrix filled with aligned circular cylinders of a different
aterial. Most recently, Fang and Hu investigated the distribution of

ynamic effective thermal properties along the gradation direction
f functionally graded materials by using Fourier heat conduction
aw [15] and non-Fourier heat conduction law [16].

Nevertheless, little attention has been paid to the non-steady
ffective thermal conductivity of composites with coated fibers.
ith the wide application of composites in aerospace, automo-

ive industries, and other high temperature situations, the study on
he non-steady effective thermal conductivity of composites with
oating fibers plays very important role in the designing and manu-
acture of materials. Recently, Fang et al. [17] have applied thermal
ave method to study the effects of coating on the non-steady effec-

ive thermal conductivity of materials. The theory of Waterman and
ruell [18] was applied to obtain the non-steady effective thermal
onductivity of composites. However, this theory neglects the mul-
iple scattering effects among the fibers, and is only suited to dilute
oncentrations of fibers.

The main objective of this paper is to extend the work of Fang
t al. [17] to the multiple scattering of thermal waves by the dense
oated fibers in composites, and the effects of the coating on the
on-steady effective thermal conductivity of composites are con-
idered. Thermal wave is often applied with Fourier conduction law.
ourier law underlies “parabolic thermal wave” associated with
nonlinear dependence of thermal conductivity on temperature,

nd the “thermal wave method” of measuring thermal properties.
he same-size fibers of identical properties with same-thickness
oating are assumed to be randomly distributed with a statis-
ically uniform distribution. The temperature fields in different
egions of composites are expressed by using the wave func-
ion expansion method, and the expanded mode coefficients are
etermined by satisfying the boundary conditions of the coating.
onsidering that the positions of the fibers are random, the tem-
erature fields in composites are averaged. The averaged equations
re solved by using Lax’s quasicrystalline approximation [19] to
btain the effective propagating wave number and the non-steady
ffective thermal conductivity of composites. The variation of effec-
ive thermal conductivity under different parameters is graphically
llustrated and discussed.

. Formulation of the problem
Consider a composite material containing a large number N of
oated fibers embedded in an infinite matrix. The long, parallel
bers with identical properties are randomly distributed in the
atrix. The inner radius of the fibers is a0, and the outer radius

s am. The geometry is depicted in Fig. 1, where (x, y, z) is the Carte-
Fig. 1. Coated cylindrical fibers and coordinate systems in composites.

sian coordinate system with origin at the center of the fiber, and (r,
�, z) is the corresponding cylindrical coordinate system. The fibers
are labeled by suffixes i = 1, 2, . . ., N. The position vector of the cen-
ter of the ith fiber is denoted by ri, as depicted in Fig. 1. Let �, c,
� be the thermal conductivity, specific heat capacity at constant
pressure and mass density of the matrix, and �f, cf, �f, those of the
fibers. It is assumed that the thickness of the coating is h with mate-
rial properties �c, cc, �c. Let the boundary of the ith fiber and the
coating be denoted by Cif, and that of the coating and the matrix by
Cim.

3. Conditional probability density function for fiber
distribution

To analyze the correlation of the temperature field among the
randomly distributed fibers, the conditional probability density
function for fiber distribution must be specified. The probability
density of the random variable (r1, r2, . . ., rN) is denoted by p(r1,
r2, . . ., rN). Then, due to the indistinguishability of the cylindrical
fibers, it is symmetric in its arguments, and we have

p(r1, r2, . . . , rN)

= p(ri)p(r1, r2, . . . ,′, . . . , rN |ri)

= p(ri)p(rj|ri)p(r1, r2, . . . ,′, . . . ,′ . . . , rN |rj|ri), p(ri)

= p(r1), p(rj|ri) = p(r2|r1), i /= j, (1)

where the probabilities with the vertical bar in their argument
denote the customary conditional probabilities. A prime in the first
part of Eq. (1) means ri is absent, while two primes in the second
part of Eq. (1) mean both ri and rj are absent. For a uniform com-
posite material, the position of a single cylindrical fiber is equally
probable within a large region V of the volume of composites, and
so its distribution is uniform with density, i.e.,

p(ri) = 1/V, if ri ∈ V ; p(ri) = 0, if ri /∈ V. (2)
If the center of the ith fiber, well within V, is held fixed, the dis-
tribution of the cylindrical fibers around it will be cylindrically
symmetrical. Thus, the conditional probability density function
p(rj|ri) is usually expressed in term of the pair correlation function
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(rij), i.e.,

(rj|ri)=
1
V

[1 − g(rij)], if rj ∈ V ; p(rj|ri) = 0, if rj /∈ V. (3)

here the pair correlation function g(rij) is a decreasing function
f rij. The normalization condition of p(rj|ri) gives, in the limit as
→ ∞

lim
→∞

1
R2

∫ R

0

g(rij)rijdrij = 0. (4)

ue to the impossibility of interpenetration of the cylindrical fibers
nd their independence when they are infinitely apart, function
(rij) satisfies the following conditions

(rij) = 1 if rij < 2am; lim
rij→∞

g(rij) = 0. (5)

he first of these conditions holds for the non-overlapping sets of
ylindrical fibers. The second condition is correct if the correlation
n spatial positions of the fibers disappears.

A function satisfying these conditions is expressed as

(rij) =
{

1, rij < 2am

ı exp(−rij/r0), rij > 2am
, (6)

here ı [0 < ı ≤ exp(2am/r0)] is the coefficient, and r0 > 0 is the cor-
elation length.

. Multiple scattering of thermal waves by fibers and the
ave fields in different zones

Based on the Fourier heat conduction law, the heat conduction
quation in composites, in the absence of heat sources, is described
s

2T(r, t) = 1
D

∂T

∂t
, (7)

here ∇2 = ∂2/∂x2 + ∂2/∂y2 represents the two-dimensional
aplace operator, T is the temperature in composite materials, and
is the thermal diffusivity with

= �

�c
. (8)

he solution of periodic steady state is investigated. Suppose that

= T0 + Re[ϑ exp(−iωt)], (9)

here T0 is the average temperature, and ω is the incident fre-
uency of thermal waves.

Substituting Eq. (9) into Eq. (7), the following equation can be
btained

2ϑ + �2ϑ = 0, (10)

here � is the wave number of complex variables in materials, and

= (1 + i)k, (11)

ith k =
√

ω/2D being the incident wave number.
It is assumed that the thermal waves propagate in the posi-

ive x direction. Thus, the incident thermal waves in the matrix are
xpressed as

(i) = ϑ0ei(�x−ωt), (12)

here the superscript (i) stands for the incident waves in the matrix,
nd ϑ0 is the temperature amplitude of incident thermal waves in

he matrix. It should be noted that all wave fields have the same time
ariation e−iωt, which is omitted in all subsequent representations
or notational convenience.

When the thermal waves propagate in the fibrous composite
aterial, the waves are scattered by the fibers, and the scattered
a Acta 485 (2009) 49–56 51

waves of the fibers are expanded in a series of outgoing Hankel
functions. The scattered field around the ith fiber in the matrix is
expressed in the form

ϑ(s)
i

=
∞∑

n=−∞
AinH(1)

n (�ri)e
in�i , (13)

where the superscript(s) stands for the scattered waves, H(1)
n (·) is

the nth Hankel function of the first kind, and Ain are the mode coef-
ficients that account for the distortion of the scattered cylindrical
waves by the ith fiber.

Thus, the total scattered field ϑ(s) in composites is taken to be a
superposition of the scattered fields of every fiber, and is expressed
as

ϑ(s) =
N∑

i=1

ϑ(s)
i

. (14)

The total temperature in the matrix ϑ(m) should be produced by
the superposition of the incident field and the total scattered field,
i.e.,

ϑ(m) = ϑ(i) + ϑ(s). (15)

The refracted waves inside the ith fiber are standing waves, and can
be expressed as

ϑ(r)
i

=
∞∑

n=−∞
BinJn(�f ri)e

in�i , (16)

where the superscript (r) stands for the refracted waves, Jn(·) is the
nth Bessel function of the first kind, and Bin are the mode coeffi-
cients of refracted waves.

The temperature ϑ(c)
i

in the coating of the ith fiber may be
described by the sum of the two components (outgoing and ingo-
ing), and is expressed in the following form [20,21]

ϑ(c)
i

=
[ ∞∑

n=−∞
EinH(1)

n (�cri)e
in�i +

∞∑
n=−∞

FinH(2)
n (�cri)e

in�i

]
, (17)

where H(2)
n denoting the ingoing waves is the nth Hankel function

of the second kind, and Ein and Fin are the mode coefficients in the
coating.

The wave numbers �f in the ith cylindrical fiber and �c in the
coating are given by

�f = (1 + i)

√
ω

2Df
, (18)

�c = (1 + i)

√
ω

2Dc
, (19)

where Df = �f/�fcf and Dc = �c/�ccc.

5. Boundary conditions and solution of mode coefficients

The boundary conditions on Cim and Cif of the ith fiber are given
by

ϑ(c) = ϑ(m), q(c) = q(m) for ri = am, (20)

i ri ri

ϑ(r)
i

= ϑ(c)
i

, q(r)
ri

= q(c)
ri

for ri = a0, (21)

where qri is the heat flow density around the ith fiber in the radial
direction, and qri = −�(∂ϑ)/(∂ri).
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〈
Tn

i

〉
i
= n0

∞∑
s=−∞

A′
n+s

∫
|rio−rjo|>2an

[1 − g(rij)]
〈

Tn+s
j

〉
j
H(1)

s (�rij)e
is�ij d
j.

(35)
2 X.-Q. Fang et al. / Thermo

The continuous boundary condition of temperature on Cin gives
∞∑

n=−∞
[EinH(1)

n (�cam)ein�i + FinH(2)
n (�cam)ein�i

= ϑ0ei�x +
N∑

j=1

∞∑
n=−∞

AjnH(1)
n (�rj)e

in�j . (22)

ultiplying by e−is�i and integrating from 0 to 2	 on both sides of
q. (22), the following equation can be obtained

(1)
s (�cam)Eis + H(2)

s (�cam)Fis = ϑ0isJs(�am)ei�rio cos �io

+
N∑

j=1

∞∑
n=−∞

AjnKjins, (23)

here

jins =

⎧⎨
⎩

1
2	

∫ 2	

0

[H(1)
n (�am)ein�j e−is�i d�i j /= i

H(1)
s (�am)ıns j = i

, (24)

n which ıns is Kronecker delta function. Using the addition theorem
or Hankel functions, one can obtain

jins = 1
2	

∫ 2	

0

{
ein�ij (−1)n

∞∑
v=−∞

(−1)vJv(�am)H(1)
v−n(�rij)e

iv(�i−�ij)

}

× e−is�i d�i = Js(�am)H(1)
n−s(�rij)e

i(n−s)�ij , (j /= i), (25)

here (rij, �ij) are the coordinates of oj referred to oi as origin.
Then, Eq. (23) is rewritten as

(1)
s (�cam)Eis + H(2)

s (�cam)Fis = AisH
(1)
s (�am) + Js(�am)

×

⎡
⎣ϑ0isei�rio cos �io+

N∑
j=1,j /= i

∞∑
n=−∞

Aj,n+sH
(1)
n (�rij)e

in�ij

⎤
⎦.

(26)

imilarly, the continuous boundary conditions of temperature on
if give

sJs(�f a0) = EsH
(1)
s (�ca0) + FsH

(2)
s (�ca0). (27)

ccording to the continuous boundary conditions of heat flux den-
ity on Cim and Cif, one can obtain

c

[
Es

∂

∂am
H(1)

s (�cam) + Fs
∂

∂am
H(2)

s (�cam)

]

= �

⎧⎨
⎩ ∂

∂am
H(1)

s (�am)Ais + ∂

∂am
Js(�am)

⎡
⎣ϑ0isei�rio cos �io

+
N∑

j=1,j /= i

∞∑
n=−∞

Aj,n+sH
(1)
n (�rij)e

in�ij

⎤
⎦

⎫⎬
⎭ , (28)

f

[
Bs

∂

∂a0
Js(�f a0)

]
= �c

[
Es

∂

∂a0
H(1)

s (�ca0) + Fs
∂

∂a0
H(2)

s (�ca0)

]
.
(29)
According to Eqs. (17–22), the expanded coefficient of scattered
aves As can be expressed as

is = A′
sT

s
i , (30)
a Acta 485 (2009) 49–56

where

A′
s = Xs

H(1)
s (�cam)

H(1)
s (�am)

+ Ys
H(2)

s (�cam)

H(1)
s (�am)

− J(1)
s (�am)

H(1)
s (�am)

, (31)

Ts
i = ϑ0isei�rio cos �io +

N∑
j=1,j /= i

∞∑
n=−∞

A′
n+sT

n+s
j

H(1)
n (�rij)e

in�ij . (32)

in which Xs and Ys are shown in Appendix A. It should be noted that
Ts

i
is the temperature field in any point of composites.
When either oi or oi and oj together are held fixed, to determine

the mean temperature field in composites
〈

Ts
i

〉
i
, the conditional

expectation of the fiber distribution is used. From Eq. (32), one can
obtain

〈
Ts

i

〉
i
= ϑ0isei�rio cos �io + n0

(
1 − 1

N

) ∞∑
n=−∞

A′
n+s

×
∫

rio,rjo ∈ S

[1−g(rij)
〈

Tn+s
j

〉
ij

H(1)
n (�rij)e

in�ij d
jH
(1)
n (�rij)e

in�ij d


(33)

where n0 = N/S = c/(	a2
0) is the number of cylindrical fibers per

unit area, c is the volume fraction of fibers in the matrix, and
g(rij) shown in Eq. (6) is the pair correlation function of fiber dis-
tribution. Eq. (33) involves the conditional expectation with two
cylindrical fibers held fixed. If we take the conditional expectation
of Eq. (33) with two cylindrical inclusions held fixed, the result-
ing equation will contain the conditional expectation with three
cylindrical inclusions held fixed, and so on. To eliminate this hier-
archy, Lax’s quasicrystalline approximation theory [19] is applied. In
Lax’s quasicrystalline approximation theory [19], the two-inclusion
correlation function is involved, and the mean temperature field is
expressed as〈

Ts
i

〉
ij

=
〈

Ts
i

〉
i
, i /= j, (34)

According to the extinction theorem, when S and N become
infinitely large, the incident wave is extinguished on entering the
composite, so that the corresponding term in Eq. (33) can be
dropped. Thus, this equation is simplified to
Fig. 2. Non-steady effective thermal conductivity as a function of volume fraction
of fibers (k∗ = 1.0, �∗

f
= 4.0, c∗

f
= �∗

f
= 2.0, �∗

c = 2.5, c∗
c = �∗

c = 1.5).
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ssuming the existence of an average plane wave, the solution of
q. (35) is proposed as

Tn
i

〉
i
= inTneiKrio cos �io , (36)

here Tn is a constant, and K is the wave number of the effec-
ive thermal waves. Making use of the Green’s theorem and wave
unction expansion method, the following can be obtained

iKrjo cos �jo = eiKrio cos �io

∞∑
m=−∞

i−mJm(Krji)e
−im�ji . (37)

he first integral appearing in Eq. (35) can be simplified as

|rio−rjo|>2an

eiKxjo H(1)
s (�rij)e

is�ij d
j

= 1
�2 − K2

∫
|rio−rjo|>2an

[(∇2eiKxjo )H(1)
s (�rij)e

is�ij

−eiKxjo∇2H(1)
s (�rij)e

is�ij ]d
j = eiKxio
2	ami−s

�2 − K2

×
[

Js(2Kam)
∂

∂am
H(1)

s (2�am) − H(1)
s (2�am)

∂

∂am
Js(2Kam)

]
. (38)

In the same way, the second integral in Eq. (35) can be also
implified. Then, Eq. (35) reduces to the system of equations

n = 2	n0

∞∑
s=−∞

A′
n+sTn+s

{
am

�2 − K2

[
Js(2Kam)

∂

∂am
H(1)

s (2�am)

−H(1)
s (2�am)

∂

∂am
Js(2Kam)

]
−
∫ ∞

2an

g(rij)Js(Krij)H
(1)
s (�rij)rijdrij

}
.

(39)

he set of Eq. (39) consists of an infinite number of homogeneous
inear equations determining the coefficients Tn. For a nontriv-
al solution of Tn, the determinant must vanish, and this leads to
he equation for the effective wave number K. It is noted that the
ffects of multiple scattering on the coherent waves are of great
ractical importance for the volume fraction of fibers (Vf = 0.1–0.5).
t very low volume fraction of fibers (Vf < 0.1), the multiple scat-

ering effect can be neglected and each fiber can be treated as
ndependent.

The expressions of Js(x) and H(1)
s (x) are written as

s(x) =
∞∑

k=0

(−1)k

k!(s + k)!

(
x

2

)s+k

, (40)

(1)
s (x) = i

sin(s	)
[Js(x)e−is	 − J−s(x)]. (41)

hen r0 is sufficiently small compared to the wavelength, by using
qs. (40–41) and retaining the lowest order terms for h/a0 = 0, one
an obtain

n 	 −	c

∞∑
s=−∞

A′′
n+sTn+s

[
1
	

(
K

�

)s 1

1 − (K/�)2
+ i

2
�2Ps

]
, (42)

here

′′
0 = �f

�
− 1, (43)
′′
±1 = � − �f

� + �f
, (44)

′′
q = 0, (|q| ≥ 2), (45)
a Acta 485 (2009) 49–56 53

P0 	 2i

	
Vr2

0

(
1 + log

�r0

2
− i	

2

)
, (46)

P±1 	 i

	
Vr2

0
K

�
, (47)

P±2 	 i

2	
Vr2

0

(
K

�

)2
, (48)

Pv = 0, |v| ≥ 3. (49)

6. Non-steady effective properties of the fiber reinforced
composites

According to Eq. (11), the non-steady effective thermal conduc-
tivity �eff can be easily obtained from the effective propagating
wave number as follows:

�eff = �eff ceff �

�c
[Re(k/K)]2, (50)

where Re(·) denotes the real part, and �eff and ceff are the effective
mass density and effective heat capacity of composites. From Ref.
[1], it is known that �eff and ceff always follow the mixture rule, and
�effceff is given by

�eff ceff = �c

{
1 − Vf

(
1 + h

a0

)2
}

+ �f cf Vf + hVf

a0
�ccc

(
2 + h

a0

)
.

(51)

7. Numerical examples and discussion

To examine the effect of material properties on the non-steady
effective thermal conductivity of composites, for a given value
of k, A′

s is computed. Next, the complex coefficient matrix M
corresponding to Tn in Eq. (39) is formed. The complex deter-
minant of the coefficient matrix is computed using standard
Gauss elimination techniques. For a given value of k, the root of
the equation del(M) = 0 is searched in the complex plane using
Muller’s method. Good initial guesses are provided by Eq. (42)
at low values of k and these can be used systematically to
obtain quick convergence of roots at increasingly higher values of
k.

In the following analysis, it is convenient to make the vari-
ables dimensionless. To accomplish this step, a representative
length scale a0, where a0 is the radius of fibers, is intro-
duced. The following dimensionless variables and quantities
have been chosen for computation: the incident wave number
k* = ka0 = 0.1–2.0, h* = h/a0 = 0.05–0.20, �∗

f
= �f /� = 2.0 − 8.0, c∗

f
=

cf /c = 2.0 − 4.0, �∗
f

= �f /� = 2.0 − 4.0, �∗
c = �c/� = 0.5 − 8.0,

c∗
c = cc/c = 1.0 − 4.0, and �∗

c = �c/� = 1.0 − 4.0. The dimension-
less effective thermal conductivity is �* = �eff/�.

The non-steady effective thermal conductivity of composites
as a function of volume fraction of fibers with parameters: k∗ =
1.0, �∗

f
= 4.0, c∗

f
= �∗

f
= 2.0, �∗

c = 2.5, c∗
c = �∗

c = 1.5 is presented
in Fig. 2. Because the thermal conductivity of the fiber is greater
than that of the matrix, the non-steady effective thermal conduc-
tivity increases with the volume fraction of fibers. It can be seen
that the non-steady effective thermal conductivity increases with
the increase of the thickness of the coating. When the volume frac-
tion of the fiber is small, the effect of the thickness of the coating

is little. When the volume fraction of the fiber is great, the effect
of the thickness of the coating becomes more distinct. When the
thickness of the coating is great, the non-steady effective thermal
conductivity of composites increases greatly with the increase of
the volume fraction of fibers.
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great difference. The effect of the value of �c on the non-steady
ig. 3. Non-steady effective thermal conductivity as a function of dimensionless
ave number (h∗ = 0.1, Vf = 0.1, �∗

f
= 4.0, �∗

c = 2.5, c∗
c = �∗

c = 1.5).

Fig. 3 illustrates the non-steady effective thermal conductiv-
ty of composites as a function of the incident wave number

ith parameters: h∗ = 0.1, Vf = 0.1, �∗
f

= 4.0, �∗
c = 2.5, c∗

c = �∗
c =

.5. As expected, the steady effective thermal conductivity is not
ependent on the specific heat and density of the two phases.
o, in the region of very low frequency, the variation the specific
eat and density of the two phases nearly expresses no effect on
he effective thermal conductivity. With the increase of the inci-
ent wave number, the effect of the specific heat and density of
he two phases on the non-steady effective thermal conductivity
ncreases greatly. The non-steady effective thermal conductivity
ncreases with the specific heat and density ratio of the fibers and

atrix.
Fig. 4 illustrates the non-steady effective thermal conductiv-

ty of composites as a function of the incident wave number with
arameters: h∗ = 0.1, Vf = 0.4, �∗

f
= 4.0, �∗

c = 2.5, c∗
c = �∗

c = 1.5.
omparing the results with those in Fig. 3, it is clear that with the

ncrease of the volume of fibers, the effects of the values of c∗
f

and
∗
f

on the non-steady effective thermal conductivity of compos-

tes increase greatly. The effect of the volume fraction of fibers on
he non-steady effective thermal conductivity increases with the
ncrease of the wave frequency. When the volume fraction of fibers
s great, in the region of low frequencies, the specific heat and den-

ig. 4. Non-steady effective thermal conductivity as a function of dimensionless
ave number (h∗ = 0.1, Vf = 0.4, �∗

f
= 4.0, �∗

c = 2.5, c∗
c = �∗

c = 1.5).
Fig. 5. Non-steady effective thermal conductivity as a function of dimensionless
wave number (Vf = 0.1, �∗

f
= 4.0, c∗

f
= �∗

f
= 2.0, �∗

c = 2.5, c∗
c = �∗

c = 1.5).

sity of the two phases also show great effect on the non-steady
effective thermal conductivity of composites.

Fig. 5 illustrates the non-steady effective thermal conductivity
of composites as a function of dimensionless wave number with
parameters: Vf = 0.1, �∗

f
= 4.0, c∗

f
= �∗

f
= 2.0, �∗

c = 2.5, c∗
c = �∗

c =
1.5. It can be seen that in the region of low frequency the non-
steady effective thermal conductivity increases with the increase of
the value of h*. However, in the region of high frequency, the non-
steady effective thermal conductivity decreases with the increase
of the value of h*.

Fig. 6 illustrates the non-steady effective thermal conductivity
of composites as a function of dimensionless wave number with
parameters: Vf = 0.4, �∗

f
= 4.0, c∗

f
= �∗

f
= 2.0, �∗

c = 2.5, c∗
c = �∗

c =
1.5. Comparing the results with those in Fig. 5, it can be seen that
with the increase of the volume fraction of fibers, in the region
of low and high frequencies, the effect of the value of h* on the
non-steady effective thermal conductivity expresses little variation.
However, in the region of intermediate frequencies, the effect of the
value of h* on the non-steady effective thermal conductivity shows

∗

effective thermal conductivity increases with the volume fraction
of fibers.

Fig. 7 shows the non-steady effective thermal conductivity of
composites as a function of dimensionless wave number with

Fig. 6. Non-steady effective thermal conductivity as a function of dimensionless
wave number (Vf = 0.4, �∗

f
= 4.0, c∗

f
= �∗

f
= 2.0, �∗

c = 2.5, c∗
c = �∗

c = 1.5).
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ig. 7. Non-steady effective thermal conductivity as a function of dimensionless
ave number (Vf = 0.1, h∗ = 0.1, �∗

f
= 4.0, c∗

f
= �∗

f
= 2.0, c∗

c = �∗
c = 1.5).

arameters: Vf = 0.1, h∗ = 0.1, �∗
f

= 4.0, c∗
f

= �∗
f

= 2.0, c∗
c = �∗

c =
.5. It can be seen that in the region of low frequency, the non-
teady effective thermal conductivity increases with the increase of
he value of �∗

c . However, in the region of high frequency, the non-
teady effective thermal conductivity nearly expresses no variation
ith the value of �∗

c .
Fig. 8 shows the non-steady effective thermal conductivity of

omposites as a function of dimensionless wave number with
arameters: Vf = 0.4, h∗ = 0.1, �∗

f
= 4.0, c∗

f
= �∗

f
= 2.0, c∗

c = �∗
c =

.5. Comparing the results with those in Fig. 7, it can be seen that
ith the increase of the volume fraction of fibers, only in the region

f low frequencies, the effect of the value of �∗
c on the non-steady

ffective thermal conductivity is great. However, in the region of
igh frequencies, the effect of the value of �∗

c on the non-steady
ffective thermal conductivity expresses little variation. The effect
f the value of �∗

c on the non-steady effective thermal conductivity
ncreases with the decrease of the volume fraction of fibers.

Finally, to demonstrate the validity of this dynamic thermal

odel, the steady effective thermal conductivity of two-phase com-

osites without coating is given. As k* → 0, the dynamic effective
hermal conductivity tends to the steady solutions. In Fig. 9, the
esults obtained from the present model, Effective Medium The-

ig. 8. Non-steady effective thermal conductivity as a function of dimensionless
ave number (Vf = 0.4, h∗ = 0.1, �∗

f
= 4.0, c∗

f
= �∗

f
= 2.0, c∗

c = �∗
c = 1.5).
Fig. 9. Comparison of the steady effective thermal conductivity with EMT model and
Hasselman and Johnson (Ref. [9]) (�∗

f
= 10.0, c∗

f
= 2.0, �∗

f
= 2.0, h∗ = 0, k∗ = 0).

ory [4] and Hasselman and Johnson [9] are plotted. It is noted that
the steady effective thermal conductivity equations obtained from
Effective Medium Theory [4] and Hasselman and Johnson [9] are
listed in Appendix B. Close agreement is seen to exist between the
models; however, the present model predicts a lower value of effec-
tive thermal conductivity than the Effective Medium Theory. This
is consistent with regards to criticism of the conventional Effective
Medium Theory for overestimating the effective thermal conductiv-
ity of two-phase composites when �f > �. This is attributed to the
assumption that the fibers are regarded as the effective medium
even at close range.

8. Conclusions

The multiple scattering of thermal waves in composites rein-
forced by dense coated fibers is investigated theoretically by
employing wave functions expansion method. The interactions of
temperature field between the fibers in the matrix are considered.
The Lax’s quasicrystalline approximation is applied to obtain the
effective propagating wave number of thermal waves. The ana-
lytical solution of the non-steady effective thermal conductivity
of composites is presented. Comparison with the steady effective
thermal conductivity demonstrates the validity of the dynamical
thermal model.

It has been found that the non-steady effective thermal conduc-
tivity of composites is dependent on the incident wave number,
the volume fraction of fibers, the material properties ratio of the
fiber and matrix and the properties of the coating. The non-steady
effective thermal conductivity of the composites increases with
an increase of the thickness of the coating, the volume fraction of
fibers, and the thermal conductivity ratio of the fiber and matrix.
The effects of the thickness of the coating and the thermal con-
ductivity ratio of the fiber and matrix on the non-steady effective
thermal conductivity increase with the increase of the volume frac-
tion of fibers. In contrast to the steady case, the frequency of the
thermal waves has great influence on the effective thermal con-
ductivity. In the region of low frequency, the variation the specific
heat and density of the two phases nearly expresses no effect on

the effective thermal conductivity. With the increase of the incident
wave number, the effects of the specific heat and density of the two
phases on the non-steady effective thermal conductivity increase
greatly. In different region of frequency, the effect of the thick-
ness of the coating also shows great difference. Therefore, to gain a
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igher effective thermal conductivity of composites, when the fre-
uency of thermal loading is low, the greater thickness and thermal
onductivity of the coating and the greater thermal conductivity
atio of the fibers and matrix should be chosen. However, in the
egion of high frequency, the smaller thickness of the coating is
referable. In addition, in the region of lower frequencies, a greater
olume fraction of fibers can also help us obtain a higher effec-
ive thermal conductivity of composites. However, in the region
f very high frequency, a smaller volume fraction of fibers is
referable.

The results of this paper can provide guidelines for the design
f fiber reinforced composites in the presence of coating and
ould be helpful in understanding the thermal behavior of

omposites.

ppendix A

The expressions of Xs and Ys are given by

s = PsKs

MsKs − NsLs
, (A1)

s = −PsLs

MsKs − NsLs
, (A2)

here

s = H(1)
s (�cam)

∂

∂am
H(1)

s (�am) − �c

�
H(1)

s (�am)
∂

∂am
H(1)

s (�cam), (A3)

s = H(2)
s (�cam)

∂

∂am
H(1)

s (�am) − �c

�
H(1)

s (�am)
∂

∂am
H(2)

s (�cam), (A4)

s = Js(�am)
∂

∂am
H(1)

s (�am) − H(1)
s (�am)

∂

∂am
Js(�cam), (A5)
s = �f

�c
H(1)

s (�ca0)
∂

∂a0
Js(�f a0) − Js(�f a0)

∂

∂a0
H(1)

s (�ca0), (A6)

s = �f

�c
H(2)

s (�ca0)
∂

∂a0
Js(�f a0) − Js(�f a0)

∂

∂a0
H(2)

s (�ca0). (A7)
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Appendix B

The effective thermal conductivity equation obtained from
Effective Medium Method model [4] is expressed as

Vf
�f − �eff

�f + 2�eff
+ (1 − Vf )

� − �eff

� + 2�eff
= 0. (B1)

The effective thermal conductivity equation obtained from Hassel-
man and Johnson [9] is expressed as

�eff = �

(
�f

�−1

)
Vf +

(
1 + �f

�

)
(

1 − �f

�

)
Vf +

(
1 + �f

�

) . (B2)
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